https://github.com/fdavidcl/ruta/blob/master/vignettes/examples/autoencoder_robust.R
This example demonstrates the use of robust autoencoders with the Ruta package.
Define a robust autoencoder with 36-variable encoding.
library(keras)
library(ruta)
network <- input() + dense(36, "elu") + output("sigmoid")
learner <- autoencoder_robust(network)
Load MNIST and normalize
mnist <- dataset_mnist()
x_train <- array_reshape(
mnist$train$x, c(dim(mnist$train$x)[1], 784)
)
x_train <- x_train / 255.0
x_test <- array_reshape(
mnist$test$x, c(dim(mnist$test$x)[1], 784)
)
x_test <- x_test / 255.0
Train
model <- train(
learner,
x_train,
epochs = 20,
optimizer = "rmsprop",
batch_size = 64
)
Generate reconstructions from test data
decoded <- model |> reconstruct(x_test)
Utility functions for plotting
plot_digit <- function(digit, ...) {
image(array_reshape(digit, c(28, 28), "F")[, 28:1], xaxt = "n", yaxt = "n", col = gray((255:0)/255), ...)
}
plot_sample <- function(digits_test, digits_dec, sample) {
sample_size <- length(sample)
layout(
matrix(c(1:sample_size, (sample_size + 1):(2 * sample_size)), byrow = F, nrow = 2)
)
for (i in sample) {
par(mar = c(0,0,0,0) + 1)
plot_digit(digits_test[i, ])
plot_digit(digits_dec[i, ])
}
}
Plot reconstructions
plot_sample(x_test, decoded, 1:10)
Generate noisy test data and plot denoised reconstructions. Notice that values of noisy instances may not restrict themselves to the \([0,1]\) range.
x_test_noisy <- apply_filter(noise_cauchy(scale = 0.005), x_test)
decoded <- model |> reconstruct(x_test_noisy)
plot_sample(x_test_noisy, decoded, 1:10)