vignettes/examples/autoencoder_variational.Rmd
autoencoder_variational.Rmd
https://github.com/fdavidcl/ruta/blob/master/vignettes/examples/autoencoder_variational.R
This example demonstrates the use of variational autoencoders with the Ruta package.
Define a variational autoencoder with 3-variable latent space. The
encoding of a variational autoencoder is defined with
variational_block
.
library(keras)
library(ruta)
network <-
input() +
dense(256, "elu") +
variational_block(3, seed = 42) +
dense(256, "elu") +
output("sigmoid")
learner <- autoencoder_variational(network, loss = "binary_crossentropy")
Load MNIST and normalize
mnist <- dataset_mnist()
x_train <- array_reshape(
mnist$train$x, c(dim(mnist$train$x)[1], 784)
)
x_train <- x_train / 255.0
x_test <- array_reshape(
mnist$test$x, c(dim(mnist$test$x)[1], 784)
)
x_test <- x_test / 255.0
Train
model <- learner |> train(x_train, epochs = 5)
Sample the trained model
Utility functions for plotting
plot_digit <- function(digit, ...) {
image(array_reshape(digit, c(28, 28), "F")[, 28:1], xaxt = "n", yaxt = "n", col=gray((255:0)/255), ...)
}
plot_matrix <- function(digits) {
n <- dim(digits)[1]
layout(
matrix(1:n, byrow = F, nrow = sqrt(n))
)
for (i in 1:n) {
par(mar = c(0,0,0,0) + .2)
plot_digit(digits[i, ])
}
}
Plot samples
plot_matrix(samples)
Creating an animation from a sampling
library(animation)
par(bg = "white") # ensure the background color is white
plot(c(), type = "n")
ani.record(reset = T)
for (t in seq(from = 0.001, to = 0.999, length.out = 180)) {
model |> generate(dimensions = c(2, 3), from = 0.001, to = 0.999, fixed_values = t) |> plot_matrix()
ani.record()
}
saveHTML(ani.replay(), img.name = "record_plot")