Trains an autoencoder adapted to the data and extracts its encoding for the same data matrix.
autoencode(data, dim, type = "basic", activation = "linear", epochs = 20)
Numeric matrix to be encoded
Number of variables to be used in the encoding
Type of autoencoder to use: "basic"
, "sparse"
, "contractive"
,
"denoising"
, "robust"
or "variational"
Activation type to be used in the encoding layer. Some available
activations are "tanh"
, "sigmoid"
, "relu"
, "elu"
and "selu"
Number of times the data will traverse the autoencoder to update its weights
Matrix containing the encodings
\link{autoencoder}
inputs <- as.matrix(iris[, 1:4])
# \donttest{
if (keras::is_keras_available()) {
# Train a basic autoencoder and generate a 2-variable encoding
encoded <- autoencode(inputs, 2)
# Train a contractive autoencoder with tanh activation
encoded <- autoencode(inputs, 2, type = "contractive", activation = "tanh")
}
# }